Clinical Significance of the Placental Proteins (β-hCG, SP$_1$, PP$_{10}$) in Trophoblastic Disease

J. K. Jung, J. W. Kim, S. N. Bae, S. K. Song, K. T. Han, H. Y. Lee

Department of Obstetrics and Gynecology, Catholic University Medical College, Seoul, Korea

In order to find out whether the serum levels of three placental proteins, human chorionic gonadotropin β-subunit (β-hCG), Schwangerschafts Protein 1 (SP$_1$) and placental protein 10 (PP$_{10}$), can be used for prediction of the response of chemotherapy and differential diagnosis of hydatidiform mole invasive mole and choriocarcinoma, we measured the circulating levels of three placental protein in 22 patients with hydatidiform mole, 25 patients with invasive mole and 25 patients with choriocarcinoma who were registered and treated in Korean Research Institute of Trophoblastic Disease, Catholic University Medical College, Seoul, Korea.

Each group of patients was divided into high risk and low risk groups according to the modified Bagshawe's scoring system.

PP$_{10}$, a new placental glycoprotein, was measured by a specific and sensitive double antibody radioimmunoassay in each serum sample.

Both SP$_1$ and β-hCG are thought to be mainly produced by syncytiotrophoblasts, so we measured the SP$_1$/ β-hCG ratio to eliminate the influence of the number of trophoblastic cells.

The results were as follows.

1. The SP$_1$/ β-hCG ratio of each group was 18.6 ± 12.69 and 3.6 ± 0.62 in low and high risk group of hydatidiform mole patients, 3.5 ± 0.70 and 1.8 ± 0.52 in low and high risk group invasive mole patients and 1.5 ± 0.91 and 0.3 ± 0.15 in low and high risk group of choriocarcinoma patients respectively. As being progressed the disease, the ratio was decreased ($P<0.05$) but there were no significant differences between high risk group of hydatidiform mole and low risk group of invasive mole, high risk group of invasive mole and low
risk group of choriocarcinoma.

2. Serum levels of PPₙ were 26.4±12.50ng/ml and 3.5±1.31ng/ml in low and high risk group of hydatidiform mole patients respectively. PPₙ was not detected in invasive mole and choriocarcinoma patients.

3. The response to chemotherapy was better in the group with higher SP/β-hCG ratio than in the group with lower SP/β-hCG ratio.

4. Differential diagnosis between high risk group of hydatidiform mole and low risk group of invasive mole could be made by measuring the SP/β-hCG ratio and serum levels of PPₙ.

From the above results, it is considered that the SP/β-hCG ratio and serum level of PPₙ can be helpful for predicting the prognosis of trophoblastic diseases, performing the appropriate chemotherapy and making differential diagnosis between high risk group of hydatidiform mole and low risk group of invasive mole.

I. 서론

용모성질환의 진단, 치료 및 추적 관리에 있어서 중앙 특이 물질인 용모성 선자극 호르몬(human chorionic gonadotropin β-subunit, β-hCG)의 역할은 이미 잘 알려진 사실이다. 그러나 β-hCG만으로 용모성질환의 예후 판단과 항암제 사용 여부의 결정 및 포상기태와 침윤기태, 침윤기태와 용모상피암의 감별 진단을 하는 것은 대단히 어려다.

영양배엽세포(trophoblast)는 스테로이드 호르몬과 영양단백(glycoprotein)을 분비하는데 임신이 진행됨에 따라 이들 물질의 분비 양도 변하게 된다. 이들 중 β-hCG는 영양배엽세포가 비교적 미뿐화 상태인 임신 초기에는 다른 태반단백인 임신 특이 단백 1(Schwangerschafts Protein 1, SP₁), 태반 조직 단백 10(placental protein 10, PPₙ)에 비해 많이 분비되지만 이들 세포가 분화함에 따라서 상대적으로 β-hCG의 분비는 적어지게 된다.

SP₁은 Bohn(1971)에 의해 처음 정제된 임신 단백(pregnancy protein)으로 수명전의 적심 직후부터 혈청 내에 출현하며 임신이 진행됨에 따라 농도가 증가함으로 임신의 초기 진단(Grudzinskas et al., 1977; Seppala et al., 1978, Ahmed & Klobber, 1983), 임신 초기의 혈청종이나 태반 기능 검사의 지표 및 중앙표지물질로서 유용한 것으로 알려져 있다.

포상기태는 5%가 용모상피암으로 15%가 침윤기태로 진행되고, 용모상피암의 50%는 포상기태로부터 이행되므로 포상기태의 예후 측정은 대단히 중요하다.

침윤기태와 용모상피암은 임상 증상이 비슷하여 유사할 수가 있어 치료하지만 이들의 예후는 침윤기태에서 훨씬 악화하게 항암제의 지속적인 사용은 많은 합병증(탈모, 골수세포 악화 등)을 유발함으로 적절한 항암제의 선택과 치료 기간의 결정 역시 중요하다.

용모성질환의 중앙표지물질로서 β-hCG는 포상기태, 침윤기태, 용모상피암에서 그 분포폭이 넓고, 혈청에서 검출이 되지 않음 경우에도 SP₁은 검출되는 경우가 있고(Schreiber et al., 1976; Seppala et al., 1978), 질환의 경제 관점 후에도 검출되는 경우가 있어 화학요법 시 경제 관점의 난관이 되고 있다. 따라서 β-hCG의 단독 측정으로는 용모성질환의
김병 진단이 어렵고 예후 판정 및 화학요법제 사용
에 이용하는 데는 미흡한 점이 많다.

응모성질환에서 β-hCG 분비가 증가하는 것은 이
들을 분비하는 세포수의 증가와 합포체 영양배양세
포의 미분화로 인하여 β-hCG 분비 억제 물질의 분
비가 충분치 못하여 이루어지는 것이므로 저자들은
β-hCG 외에 SP, PP의 값을 측정하여 상호 관계
를 보면 세포의 미분화 정도와 응모성 질환의 진행
태도를 추정할 수 있을 것으로 사료되어 β-hCG와
SP의 혈중 농도를 측정하여 SP/β-hCG을 구하고
PP의 혈중 농도를 측정하여 응모성 질환 예후 판정
및 화학요법제 사용에 응용하기 위하여 본 연구를
하였다.

II. 재료 및 방법

1. 재료

가톨릭대학교 의학부 부속 응모성 질환 연구소에 등
록된 응모성 질환 환자 72 명을 대상으로 하였으며
포상기태와 침윤성기태는 병리조직학적으로 확정된
것으로 하였고 응모성암은 원격 전이가 있던 경
우로 제한하였다. 이들 세군은 예후측정지표(modified
Bagshawe's scoring system, Korean Research Institute
of Trophoblastic Disease, KRI-TRD, 1980) (Table 1, 2)
에 의하여 고위험군(>7)과 저위험군(<7)으로 나누
있으며 환자 분포는 포상기태 22 예(고위험군 10 예,
저위험군 12 예), 침윤성기태 25 예(고위험군 11
예, 저위험군 14 예), 응모성암 25 예(고위험군

| Table 1. Prognostic scoring system in stage 0 patients of trophoblastic disease (KRI-TRD, 1980) |
|----------------|----------------|
| Item | Score |
| 1. Disease | Classic mole |
| 2. Age | <20 or 40~49 |
| 3. Party | >4 |
| 4. Size of uterus | >6 months size |
| 5. Initial hCG (IU/L) | 3×10^4~5×10^8 |
| 6. Theca lutein cyst | >Fist size |
| 7. DNCB | (+) |
| 8. Socioeconomic level | Low |

| Table 2. Prognostic scoring system in stage I ~ IV patients of trophoblastic disease (KRI-TRD, 1980) |
|----------------|----------------|
| Item | Score |
| 1. Antecedent pregnancy | Hydatidiform mole |
| 2. Tumor age(month) | <3 |
| 3. Initial hCG (IU/L) | <10^4 |
| 4. ABO group | B or AB |
| 5. Largest tumor (cm) | <2 |
| 6. Site of metastasis | Lung |
| 7. Number of metastasios | 1~4 |
| 8. Previous chemotherapy| Prophylactic, failure |
| 9. Size of uterus | >Man's fist |

63
15 예, 저위험군 10 예)였으며 평균 연령은 36.5세 (21세~37세)였다. 절반성기(5 명)과 육모성의 암 3 명에서 화학요법을 시행하고 2주 간격으로 8주간 치료 경과 관찰을 하였으며 이들의 화학요법제는 methotrexate, actinomycin D와 cyclophosphamide들을 병합 사용하였다.

2. 방법

환자의 상완정맥에서 5ml의 정맥혈을 채취하여 즉시 혈청을 분리(3000rpm, 10분)하여 측정시까지 영하 20℃에 보관하였으며 실험시에는 실온에서 녹여 사용하였다.

1) \(\beta \)-hCG와 SP의 측정

\(\beta \)-hCG의 측정은 \(\beta \)-hCG kit(Hypolab, Switzerland)를 사용하였고(하상호와 김승조, 1977), SP의 측정은 Enzygnost™ SP, (Hoechst, W. Germany)을 사용하여 solid phase immunoassay(ELISA)로 하였으며(유영옥과 송승규, 1984), cut-off level은 3ng/ml로 하였다.

2) \(PP_n \)의 측정

Behningwerke Laboratories의 Behn 교수로부터 기증받은 purified \(PP_n \)(Lot 255/283)과 anti-\(PP_n \) antiserum(Lot 3772B, Behningwerke AC, Marburg, FRG)을 사용하였고, Chloramine-T 방법(Greenwood et al., 1963)으로 NaI125(Amersham, U.K.)에 의한 purified \(PP_n \)의 요도화(iodination)을 시도하여 표지 \(PP_n \)(radiolabelled \(PP_n \))을 구하였고, 표준 곡선은 1% bovine serum albumin(Sigma, U.S.A.)이 함유된 PBS(pH 7.2)로 계열 최적한 purified \(PP_n \)의 농도 차이(1.9~500ng/ml)를 이용하여 작성하였다(Fig. 1). anti-\(PP_n \) antiserum은 PBS로 1 : 16,000으로 최적화하여 표지 \(PP_n \)과 결합시켰다.

Fig. 1. Dose response curve of \(PP_n \).
이 중 방사면역 측정시 대상군의 혈청 및 표준 배양액 100μl를 100μl의 anti-PPα anti-serum과 표지 PPα(17,000 cpm/100μl)과 함께 실험에서 24시간 동안 배양시킨 후 100μl의 SacCell®(antirabbit donkey antibody coated cellulose suspension, Wellcome Reagents Ltd., Beckenham, U.K.)를 첨가하여 항체결합 방사능(antibody-bound radioactivity)을 측정시킨 후 시험관을 2000 rpm으로 10분간 원심 분리하여 상층액을 흡입 제거하고 침전물을 gamma counter (Abbott, U.S.A.)로 1분 동안 방사능을 측정하였다. Intrassay 및 Interassay의 변이 계수는 각각 10.1%, 13.2%였으며 cut-off level은 1.9ng/ml로 하였다.

4) 통계분석
Mann-Whitney의 U 검정을 하였으며 유의수준은 0.05로 하였다.

III. 성적
1. SP, 분비 증가에 대한 β-hCG 분비의 증가폭은 응모성질환 각군의 희귀적성에서 보는 바와 같이 희귀체가 포상기태 저위험군 2.9, 고위험군 24.0, 침윤성기태 저위험군 23.0, 고위험군 34.8, 응모상피암 저위험군 48.4, 고위험군 258.5로 약성화 정도가 큰수록 증가폭이 크게 나타났으나(P<0.05), 침윤성기태 저위험군과 포상기태 고위험군, 침윤성기태 고위험군과 응모상피암 저위험군 사이의 증가폭은 비슷하여 유의한 차가 없었다.(Fig. 2)

2. 응모상피암 각군에서 SP, 농도는 포상기태 저위험군(3~124,000ng/ml, median 8,300ng/ml), 고위험군(9~132,000ng/ml, median 2,721ng/ml), 침윤성기태 저위험군(7~1,740ng/ml, median 658ng/ml), 고위험군(16~1,408ng/ml, median 540ng/ml), 응모상피암 저위험군(11~2,299ng/ml, median 680

![Graph](image)

Fig. 2. Correlationship between β-hCG and SP1.
ng/ml), 고위험군(7~2,320ng/ml, median 175ng/ml)으로 분포폭이 넓어 각 군간에 유의한 차는 없었으나 포상기태에서 침윤성기태나 응모상피암보다 높은 경향을 보였다.(Fig. 3)

3. 응모성 질환 각군에서 PPα의 혈중 농도는 포상기태 고위험군 3.5±1.31ng/ml, 저위험군 26.4±12.50ng/ml로 통계적으로 유의한 차가 있었으나(P <0.05) 침윤성기태와 응모상피암에서는 PPα가 검출되지 않았다.(Table 3, Fig. 3)

4. 응모성질환 각군에서 SP/β-hCG은 포상기태 저위험군 18.6±12.69, 고위험군 3.6±0.62, 침윤성기태 저위험군 3.5±0.70, 고위험군 1.8±0.52, 응모상피암 저위험군 1.5±0.91, 고위험군 0.3±0.15이었으며 각군의 고위험군과 저위험군 사이에는 통계적으로 유의한 차가 있었으나(P <0.05) 포상기태의 고위험군과 침윤성기태의 저위험군, 침윤성기태 고위험군과 응모상피암 저위험군 사이에는 통계적으로 유의한 차가 없었다.(Table 3, Fig. 4)

5. 화학요법을 받은 침윤성기태 저위험군 3명과 고위험군 2명 및 응모상피암 고위험군 3명에서 치료 결과에 따른 SP/β-hCG의 변화는 SP/β-hCG 용이 낮았던 응모상피암 환자에서는 용의 증가가 없었고 예후도 나빴으며(사망 2명), 침윤성기태에서는 (초기 SP/β-hCG 용 .94~4.95) 2~4주후부터

Fig. 3. PPα levels in trophoblastic disease.
(transverse bar indicates the mean value)

Table 3. Serum levels of placental proteins (SP, β-hCG, PPα) in hydatidiform mole, invasive mole and choriocarcinoma

<table>
<thead>
<tr>
<th></th>
<th>Low risk</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>3~124,700</td>
<td>4,407~280,000</td>
<td>26.4±12.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8,300)</td>
<td>(49,540)</td>
<td></td>
</tr>
<tr>
<td>H-mole</td>
<td>High risk</td>
<td>10</td>
<td>9~13,200</td>
<td>365~3,320,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,721)</td>
<td>(78,600)</td>
<td></td>
</tr>
<tr>
<td>Invasive mole</td>
<td>Low risk</td>
<td>14</td>
<td>7~1,740</td>
<td>242~35,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(658)</td>
<td>(18,550)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk</td>
<td>11</td>
<td>16~1,408</td>
<td>1,356~56,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(540)</td>
<td>(25,200)</td>
<td></td>
</tr>
<tr>
<td>Chorio carcinoma</td>
<td>Low risk</td>
<td>10</td>
<td>11~2,299</td>
<td>2,333~72,550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(680)</td>
<td>(43,610)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk</td>
<td>15</td>
<td>7~2,320</td>
<td>3,042~407,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(175)</td>
<td>(92,300)</td>
<td></td>
</tr>
</tbody>
</table>
래로 지금까지 20여 종이 넘는 새로운 임신단백이 발견되어 왔다. 대반단백에는 hCG, SP₁,₂,₃, PP₁₋₁₄ 등이 있는데 SP₁, Bohn(1971)에 의해 처음 대반 조각에서 추출되었으며 면역조직화학적 염색으로 정상합포체 영양배엽세포와 육모상피암 세포에서 발견되며 (Bohn & Sedlacek 1975; Tatarinov et al., 1976) 유방암, 폐암, 종괴동암에서도 발견되고 정상인에서도 미량이 검출되고 있다. (Searle et al., 1978; Tatarinov & Sokolov, 1977; Kuhajda et al., 1984)

SP₁은 임신 진행에 따라 증가하여 만삭에서 10만~40만ng/ml에 이르다고 하며 (Gordon et al., 1977) 분비 장소는 정상합포체 영양배엽세포, 다형핵혈구, 단구세포, 조직구 등이 있으나 주된 분비 장소는 정상 합포체 영양배엽세포이다. 따라서 육모성질환의 감시에 유용한 단백으로 생각되며 이를 이용한 많은 연구가 있어 왔다. (Tatarinov & Sokolov, 1977; Searle et al., 1978; Seppala et al., 1978)

PP₁₀은 Bohn과 Kraus(1979)가 태반에서 처음 분리하였으며 임신이 진행됨에 따라 증가하는 태반 고유 단백질 (Inaba et al., 1980)로 생각되었으나 유효성, 고환증양, 위암, 자궁내막암 등에서도 발견되며 종양을 제거하면 혈중 농도가 수주 내에 감소되므로 암혈관성 단백으로 보는 것이 좋다고 한다 (Wurz et al., 1983b). PP₁₀의 주된 합성 장소도 합포체 영양배엽세포이며 (Wurz et al., 1983a)이 또한 육모성질환의 감시에 유용한 단백으로 생각된다.

β-hCG가 지금까지 발견된 육모성질환의 증상지표물 중에서 가장 보편적으로 보고된 단백이지만 태반 조직에서 분비되는 여러 단백들과의 상관성은 아직 알려진 바 없으며 SP₁과 PP₁₀은 합포체 영양배엽세포가 분화됨에 따라 증가하는 반면 β-hCG는 상대적으로 감소하게 되는데 이는 합포체 영양배엽세포가 분화하면 β-hCG분비가 억제되는 어떤 물질의 분비가 동반되기 때문이다 (Golander et al., 1978), Wilson 등(1980)은 황체호르몬이 이 역할을 한다고 하였으나 확실한 분비억제 기전은 아직 모른다.

Tsakok 등(1983)은 육모성질환에서 SP₁이 16.5 IU/liter 이상의 경우에는 모두 양성 예측을 보였고 16.5 IU/liter 이상에서는 육모상피암으로의 진행 반

Fig. 4. SP₁/β-hCG ratio in trophoblastic diseases. (transverse bar indicates the mean value)

SP₁/β-hCG울의 증가가 두드러지게 나타났으며 (SP₁/β-hCG울, 10.68 ~ 23.13) 이들 모두에서는 β-hCG가 1.5mIU/ml 이하로 떨어져 양호한 예후를 보였다. (Fig. 5)

IV. 고찰

Asheim과 Zondek(1927)에 의해 hCG가 발견된 이
도가 상당히 높았다고 하였으며 Searle 등(1978)은 육모성질환에서 일반적으로 SP와 β-hCG가 평행하게 증가하나 β-hCG가 검출되지 않을 때에도 SP는 나타날 수 있으므로 예후 판단을 위해 SP 측정의 필요성을 시사하였다.

저자들의 경우 SP는 포상기태에서 침윤성기태나 육모성피암보다 높게 나타났으나 이들의 분포 범위가 넓어서 질환의 진행 정도를는 연관성을 찾을 수 없었다. 이는 SP의 분비는 합포체 영양배혈세포의 수의 다소에 따라 분비량에 차이가 있었음을 것으로 생각되어 단위 세포당 SP 분비를 측정하기 위해 합포체 영양배혈세포에서 빠를 만 하고 예비한 단백인 β-hCG 분비에 대한 상대적 SP 분비를 측정한 결과 육모성질환의 양성화학수록 β-hCG 분비에 대한 SP 분비는 상대적으로 감소함을 알 수 있었으나 포상기태 고위험군과 침윤성기태 저위험군, 침윤성기태 고위험군과 육모성피암 저위험군 사이에는 유의한 차가 없었다.

Hammond 등(1973)은 요 중 hCG가 100,000IU/L 이상인 경우 고위험인자라고 간주하였으나, 저자들의 경우 100,000 IU/L 이상의 경우에도 SP/β-hCG의 비율이 높은 경우는 예후가 좋았음을 관찰할 수 있었다.

저자들의 경우 PPα는 침윤성기태와 육모성피암에서는 검출되지 않아 Wahlstrom 등(1982)과 일치하는
소견을 보였으며 포상기태 저위험군에서 고위험군보다 많은 양을 분비하였다 \((P<0.05)\). 따라서 \(PP_{\beta}\)이 검출되면 적어도 점운성기태나 응모상피암은 아니라면을 예측할 수 있었고, \(SP_{\beta}/\beta-hCG\)과 발달하여 \(PP_{\beta}\)을 측정함으로써 고위험군 포상기태와 저위험군 점운성기태의 감별을 가능하게 하는 것으로 사료되었다.

점운성기태와 응모상피암은 상당수가 포상기태로 부터 발생한다. 포상기태 제거술 후 영양배압조직이 남아 있을 때에는 자연적으로 소멸되거나 응모상피암으로 발전하게 되므로 적절한 시기에 화학요법을 하는 것은 대단히 중요하다.

저자들의 경우 화학요법을 받은 8 명에서(점운성기태 고위험군 2 명, 저위험군 3 명, 응모상피암 고위험군 3 명) 치료 경과에 따른 \(SP_{\beta}/\beta-hCG\)은 치료시에 \(SP_{\beta}/\beta-hCG\)이 낮았던 응모상피암 고위험군에서는 모두 반등이 없나 감소하여 불량한 예후(사망 2 명)를 보였으나 \(SP_{\beta}/\beta-hCG\)은 비교적 높았던 점운성기태에서는 치료 2~4주부터 \(SP_{\beta}/\beta-hCG\)이 현저히 증가되었으며, 이들의 예후는 모두 좋았다. 따라서 응모성질환의 초기 치료시에 \(SP_{\beta}/\beta-hCG\)을 이용하면 효과적인 화학요법제의 선택 및 예후 판정에 도움을 줄 수 있을 것으로 사료된다.

저자들은 응모성질환의 예후 측정 및 감별 진단에 서 \(SP_{\beta}/\beta-hCG\)의 측정과 \(PP_{\beta}\) 농도측정이 큰 도움을 주며 포상기태의 악성화를 조기에 예측할 수 있어 적절한 화학요법을 시행하는 지침이 될 수 있을 것으로 판단하였다.

V. 결 론

가톨릭대학 의학부 부속 응모성질환 연구소에 동록된 포상기태 환자 22 명(고위험군 10 명, 저위험군 12 명), 점운성기태 환자 25 명(고위험군 11 명, 저위험군 14 명), 응모상피암 환자 25 명(고위험군 15 명, 저위험군 10 명)을 대상으로 대반단백질(\(\beta-hCG, SP_{\beta}, PP_{\beta}\))의 농도와 \(SP_{\beta}/\beta-hCG\)을 측정하여 다음과 같은 결론을 얻었다.

1. 응모성질환에서 \(PP_{\beta}\)의 혈중농도는 포상기태 고위험에서 3.5±1.31ng/ml로 저위험군에서 26.4±12.50ng/ml로 통계적으로 유의한 차를 보였으나 \((P<0.05)\), 점운성기태와 응모상피암에서는 검출되지 않았다.

2. 응모성질환에서 \(SP_{\beta}\)의 혈중농도는 포상기태에서 점운성기태나 응모상피암보다 높은 경향을 보였으나 그 분포 폭이 컸다(포상기태 3~132,000ng/ml, 점운성기태 7~1,740ng/ml, 응모상피암 7~2,320ng/ml) 각 군간에 유의한 차가 없었다.

3. \(SP_{\beta}/\beta-hCG\) ratio는 포상기태(저위험군 18.6±12.69, 고위험군 3.6±0.62), 점운성기태(저위험군 3.5±0.7, 고위험군 1.8±0.52), 응모상피암(저위험군 1.5±0.91, 고위험군 0.3±0.15)의 순서로 악성화물주 변이가 높아져 통계적으로 유의한 차가 있었으나 \((P<0.05)\) 포상기태 고위험군과 점운성기태 저위험군 점운성기태 고위험군과 응모상피암 저위험군 사이에는 유의한 차를 관찰할 수 없었다.

4. 응모성질환에서 화학요법시 예후가 좋지 않은 경우에는 초기 \(SP_{\beta}/\beta-hCG\)값이 낮았으며 증상이 호전될수록 비율이 증가함을 관찰할 수 있었다.

이상의 결과로 보아 \(SP_{\beta}/\beta-hCG\)과 \(PP_{\beta}\) 농도를 측정함으로써 포상기태 고위험군과 점운성기태 저위험군의 감별이 가능한 것으로 나타났으며 이들의 측정으로 응모성질환의 진행 상태 및 적절한 화학요법제의 선택 여부를 판정하는 데 도움이 되는 것으로 사료되었다.

References

3. Bohn H : Nachweis und Charakterisierung von Schwan-
gerschafts Proteinen in der menschlichen Plazenta sowie ihre quantitative immunologische Bestimmung im Serum schwangerer Frauen. Arch Gynecol 1971;210:440~457
12. 하상호 · 김승호 : 정상 및 비정상 조기 임신에 있어서 혈중 hCG 및 β-hCG의 정량적 가치. 가톨릭대학교 의학부 논문집 1977;30:95~105
17. 유영숙 · 송승규 : 절반유산 예후 관점에서 볼 때 혼성 Pregnancy-Specific β1-Glycoprotein 값의 임상적 의의. 가톨릭대학교 의학부 논문집 1964;37:809~818
22. Tatarinov YS, Falaleeva DM, Kalshnikov VV, Toloknov

