An Immunohistochemical Study for the ras and neu Oncoprotein and Epidermal Growth Factor Receptor in the Uterine Cervical Carcinoma

Min Seog Lee, M.D., Il Soo Park, M.D.

Department of Obstetrics and Gynecology,
College of Medicine, Kyungpook National University

To evaluate the expression of ras, neu oncoprotein and epidermal growth factor receptor (EGFR) on uterine cervical carcinoma, immunohistochemical staining was performed on 9 cases of dysplasia, 39 cases of carcinoma in situ (CIS), 32 cases of microinvasive carcinoma (MIC) and 60 cases of frankly invasive carcinoma (FIC).

The results obtained were as follows:

Ras p21 protein was positive in 29.5% of total cases, and it was very low in dysplasia lesion (12.5%) and CIS (17.9%) while it was high in MIC (31.3%) and FIC (38.9%). In CIS, parabasal cell type showed positive reaction in only 8.7%, but pleomorphic type showed 60.0% positivity. Invasive carcinoma showed no significant differences between histologic types.

Expression of neu protein was very high in cancerous group (around 95%) and slightly lower in dysplasia (75.0%). No differences were found depending on histologic types and stages.

EGFR was expressed in 51.8% of total cases; 12.5% of dysplasia; 54.2% of all cases of carcinoma.
Keratinizing type of CIS showed highest positive reaction (90.0%), of which tendency were also noted in keratinizing type of invasive carcinoma (76.2%).

The results suggested that ras and EGFR could be used as a factor of prognostic value.

I. 서론

근래에 와서 여러 가지 암유전자들이 발견되고 이들과 암과의 관계를 규명하기 위한 노력이 많 이 이루어지고 있다. 이런 노력의 하나는 암유전자와 세포 내 발현을 발암기전에 관련시켜 그 상 관관계를 규명하려는 노력이고,1,2) 또 다른 하나는 암의 예후 측정에 관련된 증상표지자(tumor marker)로서의 효용성에 대한 검토3,6)이다. 암유전자의 발암과정에서의 작용기전은 상당수에서 그 단백산물이 변형된 성장 인자이거나, 성장자 극 신호전달체계에 속하는 물질로 암세포의 자율 적(autocrine) 성장에 관계하는 것으로 알려졌다. 암의 가장 중요한 특정이 하나가 성장, 즉 세포 증식하고 자음을 지닌 세포분열이며, 따라서 암에 대한 탐구의 한 접근 방법이 세포 성장의 관계가 있는 것이고 이런 영수로 암단백의 암세포 내 발현에 관한 관심도 당연하다고 하겠다.

세포의 성장에 관계하는 여러 가지 요인들이 있으나, 대체로 성장 자극을 세포막에서 수용하여 그 신호를 내부로 전달하여 분열에 이르게 하는 데 요구되는 신호전달계체에 작용하는 물질 및 성장 인자에 관한 관심이 높은 실정이다. 지금까지 세포막에 세포분열 자극을 수용하는 수용체는 platelet derived growth factor의 수용체로 알려진 막관통성(transmembranous) 당단백인 epidermal growth factor receptor (EGFR)와 insulin-like growth factor-2의 수용체의 활성화에 관계하는 guanine binding protein (G-protein) 등이 밝혀져 있다.
의 암변환능력 확득은 점변연변이(point mutation)에 의한 것으로 알려졌다. 11) 정상 성장시 이 유전자 기능은 그 단백질의 epidermal growth factor receptor와 구조적 유사성 때문에 아직 잘 알려져 있지 않은 성장인자에 대한 것으로 생각되고 있다. 이 유전자의 단백질은 대장암, 위암, 난소암, 방광암, 갑상선암 및 유방암에서 활성화가 증명되고 있고, 12) Slamon 등 13)은 유방암 세포에서 neu-암유전자 증폭이 발현되며 생존기간이 줄어지고 빠른 재발이 일어난다고 보고한 후, 각종 종양에서 neu-암단백에 대한 항체를 이용한 면역조직화학적 조사가 활발하게 이루어지고 있다.

한편, neu 암유전자 산물과 구조적으로 유사한 epidermal growth factor receptor(EGFR)는 epidermal growth factor와 결합하여, 세포의 증식과 분화를 조절한다고 알려져 있다. 14) EGFR는 인체 고형 종양 중 특이 방광암, 15) 위암, 16) 유방암, 17) 폐암 18) 그리고 각종 폐장상피세포암 19)에서는의 발현이 보고되었고, 종양세포 증식과 분화의 한 인자로서의 중요성이 제시되고 있는 실정이다. Sainsbury 등 20)는 유방암에서 동결절편 조직을 이용해서 EGFR의 발현이 빠른 재발과 사망에 관여되는 독립된 예후인자로서의 가능성을 제시했다. Sainsbury 등 21)는 유방암에서 EGFR의 발현은 앰스트로페인 순응체와 역상관관계에 있다고 보고했고, 그 후에도 Sainsbury 등 22)는 유방암에서 조직 유형에 상관없이 EGFR의 발현이 높음을 수록 빠른 재발과 관계가 있다고 하였다.

이와 같이 모두 세포막에 존재하는 신호전달계에 속하는 ras 단백, neu 단백 및 EGFR의 각종 인체암에서 발현율에 대한 조사가 지금까지 많이 행해졌으나, 대부분의 연구가 비교적 적은 수의 증례를 대상으로 하였기 때문에 통계적 유의성에 대한 논란이 있는 실정이다. 데우나 여성생식기에 발생한 암에 대한 연구는 부족한 편이다. 따라서 본 연구는 우리나라에서 여성에게 높은 반도의 사망을 차지하는 자궁경부의 폐쇄성암과 그 전단병소로 인정되는 이형성에서 체적 비교적 많은 증례를 대상으로 이 인자들의 발현을 면역조직화학적으로 조사하고, 돌체 그 발현율과 암중의 진행 정도, 조직학적 분류 및 병기에 따른 상기 인자들의 관계를 밝히고, 범위 이들의 발현이 예후 측정인자로서 이용될 수 있는지를 알아보았다.

II. 재료 및 방법

1. 재료

본 실험에서 사용한 조직 표본은 1990년 1월 1일부터 1991년 12월 31일까지 경북대학교병원에서 자궁경부 검진, 원주진제 또는 외과적으로 절제된 자궁 중에서 경부에 이형성 또는 폐쇄성암이 조직학적으로 확인된 139예를 대상으로 하였다. 모든 환자는 조직을 얻기 전에 방사선 치료나 화학요법을 시행하지 않았다.

연구에 활용된 질병은 Table 1에 보이는 바와 같이 이형성 8예, 상피내암 39예, 미세침윤암 32예 및 침윤암 60예 등으로 그 조직을 얻은 방법은 편위검사 88예, 원주선재 25예, 자궁절제술 26예이었다. 한 환자에서 한 가지 이상의 시술을 시행한 증례는 혼합된 병소가 가장 큰 조직편을 선택하여 한 증례로 취급하였다.

2. 면역조직화학적 검사방법

조직을 10% 증상 포화알산에 고정 후 파라핀에 포매된 조직을 얇 3μm의 두께로 조직절편을 만들
어 Avidin-biotinylated peroxidase complex (ABC)법을 이용하여 neu, ras 암단백 및 EGFR를 염색하였다. 먼저 조직 절편을 xylene에 담구어 탈파라판을 하고 알코올을 거쳐 중류수로 향수시켰다. 그 후 PBS(phosphate-buffered saline, 10ml, pH 7.6)에 5분간 수세하고 3% H2O2에 5분간 원주 또는 다시 PBS에 2분 정도 수세하였다. 1차 및 2차 항체의 비특이적 결합을 억제하기 위해 ras 암단백 염색 조직은 정상 mouse 혈청에 5분 작용시킨 후 1차 항체인 monoclonal pan-ras (Ab-1)를 neu 암단백과 EGFR 염색 조직은 정상 토끼 혈청에 5분 작용시킨 후 1차 항체인 monoclonal C-neu (Ab-3)와 polyclonal EGF 수용체 (Ab-4)를 각각 PBS에 20배 희석, 도포하여 실온에서 30분간 담근 후, PBS로 수세하였다. 그 후 2차 항체인 biotinylated anti-rabbit immunoglobulin anti-serum Rabbit/Gout/Mouse를 도포하여 30분간 묻은 후, PBS로 2분 정도 씻고 avidin-biotin peroxidase reagent를 도포하여 30분간 반응시켰다. 다시 중류수에 1분간 묻은 후 발색제인 DAB (diaminobenzidine-4 HCl, Sigma) 0.1gm과 기질액인 H2O 0.02 ml을 Tris-buffer 100ml에 섞어서 반응시켰다. Hematoxylin 대조염색 후 통상적인 방법대로 탈수과정을 거쳐 balsam으로 봉합하고 광학 현미경으로 관찰하였다.

III. 성 적

환자의 연령 분포는 Table 2에 나타낸 바와 같이 28세에서 86세까지로 전체 평균은 49.2세이었고, 각 질환군별로는 이형성이 평균 38.8세, 상피내암이 47.7세, 미세침윤암이 48.4세, 침윤암이 55.2세이었다.

조직을 면역조직화학적으로 ras, neu 및 EGFR를 염색하고 Thore 등의 기준에 따라 반응정도

<table>
<thead>
<tr>
<th>Table 1. Methods of Obtaining Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Pun</td>
</tr>
<tr>
<td>Dysplasia</td>
</tr>
<tr>
<td>Carinoma in situ</td>
</tr>
<tr>
<td>Microinvasive carcinoma</td>
</tr>
<tr>
<td>Frankly invasive carcinoma</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*Pun : Punch biopsy, Con : Conization, Hsy : Hysterectomy

<table>
<thead>
<tr>
<th>Table 2. Age Distribution of the Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Dysplasia</td>
</tr>
<tr>
<td>CIS</td>
</tr>
<tr>
<td>MIC</td>
</tr>
<tr>
<td>FIC</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*DYS : Dysplasia, CIS : Carcinoma in situ, MIC : Microinvasive carcinoma, FIC : Frankly invasive carcinoma
Table 3. Expression of the ras, neu and EGFR in dysplasia and cervical cancer

<table>
<thead>
<tr>
<th>Case No</th>
<th>ras</th>
<th>neu</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysplasia</td>
<td>8</td>
<td>1(12.5)</td>
<td>6(75.0)</td>
</tr>
<tr>
<td>Carcinoma in situ</td>
<td>39</td>
<td>7(17.9)</td>
<td>37(94.9)</td>
</tr>
<tr>
<td>Microinvasive carcinoma</td>
<td>32</td>
<td>10(31.3)</td>
<td>30(93.8)</td>
</tr>
<tr>
<td>Frankly invasive carcinoma</td>
<td>60</td>
<td>23(38.3)</td>
<td>58(96.7)</td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td>41(29.5)</td>
<td>131(94.2)</td>
</tr>
</tbody>
</table>

Table 4. Expression of the ras, neu and EGFR in dysplasia

<table>
<thead>
<tr>
<th>Case No</th>
<th>ras</th>
<th>neu</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild DYS</td>
<td>3</td>
<td>0(0.0)</td>
<td>1(33.3)</td>
</tr>
<tr>
<td>Moderate DYS</td>
<td>5</td>
<td>1(20.0)</td>
<td>5(100.0)</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>1(12.5)</td>
<td>6(75.0)</td>
</tr>
</tbody>
</table>
그러므로 특히 EGFR를 중심으로 조직형별로 양성률의 차이를 조사하기 위하여, 미세침윤암(Stage Ia) 및 침윤암(Stage Ib 이상) 등 침윤암 전체를 모두 합하여 조직학적으로 keratinizing, large cell nonkeratinizing 및 small cell 형으로 분류하고 그 양성률을 조사한 결과는 Table 7에 정리하였다. 이를 보면 ras나 neu는 조직형에 따라 별다른 차이를 보이지 않고 있으나 EGFR는 keratinizing 형이 76.2%가 양성으로 타 군에 비해 현저히 양성률이 높았고 통계학적으로도 유의한 차 이를 보였다. (p=0.0216)

EGFR의 이와 같은 차이가 왜 나타나는가를 알아보기 위해 이를 다시 미세침윤암과 침윤암으로 나누어 조사하였더니 미세침윤암에서는 Table 8

| Table 5. Expression of the ras, neu and EGFR in cervical carcinoma according to stage |
|---------------------------------|--------|--------|-------|
| Stage | Case No | ras | neu | EGFR |
| Stage 0 | 39 | 7(17.9)| 37(94.9)| 25(64.1) |
| Stage I | 40 | 13(32.5)| 38(95.0)| 20(50.0) |
| la | 32 | 10(31.3)| 30(93.8)| 16(50.0) |
| lb | 8 | 3(37.5)| 8(100.0)| 4(50.0) |
| Stage II | 42 | 17(40.5)| 41(97.6)| 22(52.4) |
| IIa | 6 | 3(50.0)| 6(100.0)| 3(100.0) |
| IIb | 36 | 14(38.9)| 35(97.2)| 19(52.8) |
| Stage III| 9 | 2(22.2)| 8(88.9)| 4(44.4) |
| IIIa | 3 | 0(0.0)| 3(100.0)| 2(66.7) |
| IIIb | 6 | 2(33.3)| 5(83.3)| 2(33.3) |
| Stage IV | 1 | 1(100.0)| 1(100.0)| 0(0.0) |
| Total | 131 | 40(30.5)| 125(95.4)| 71(54.2) |

| Table 6. Expression of the ras, neu and EGFR in cervical carcinoma in situ according to histologic type |
|---------------------------------|--------|--------|-------|
| Case No | ras | neu | EGFR |
| Parabasal | 23 | 2(8.7)| 22(95.7)| 12(52.2) |
| Keratinizing | 10 | 2(20.0)| 10(100.0)| 9(90.0) |
| Pleomorphic | 5 | 3(60.0)| 4(80.0)| 3(60.0) |
| Small cell | 1 | 0(0.0)| 1(100.0)| 1(100.0) |
| Total | 39 | 7(17.9)| 37(94.9)| 25(64.1) |

| Table 7. Expression of the ras, neu and EGFR in invasive cervical carcinoma according to histologic type |
|---------------------------------|--------|--------|-------|
| Case No | ras | neu | EGFR |
| Keratinizing | 21 | 9(42.9)| 20(95.2)| 16(76.2) |
| Large cell | 65 | 22(33.8)| 62(95.4)| 28(43.1) |
| Small cell | 6 | 2(33.3)| 6(100.0)| 2(33.3) |
| Total | 92 | 33(35.9)| 88(95.7)| 56(60.7) |
고찰

본 연구에 활용된 환자 집단은 첫째 지금까지 다른 연구자들이 행해온 바와 같이 무작위로 선정하든지 어떤 목적성을 가지고 선택한 집단이 아니고 한 진료기관에서 일정 기간 동안 자궁경부에 전암 절환 또는 암종으로 확진받은 모든 환자를 대상으로 하였고, 둘째 전체적으로 139 중

| Table 8. Expression of the ras, neu and EGFR in microinvasive cervical carcinoma according to histologic type |
|----------------|-----------|-----------|----------|
| | Case No | ras | neu | EGFR |
| Keratinizing | 7 | 3(42.9) | 6(85.7) | 3(42.9) |
| Large cell | 25 | 7(28.0) | 24(96.0) | 13(52.0) |
| Small cell | 0 | | | |
| Total | 32 | 10(31.3) | 30(93.8) | 16(50.0) |

| Table 9. Expression of the ras, neu and EGFR in frankly invasive carcinoma according to histologic type |
|----------------|-----------|-----------|----------|
| | Case No | ras | neu | EGFR |
| Keratinizing | 14 | 6(42.9) | 14(100.0)| 13(92.9) |
| Large cell | 40 | 15(37.5) | 38(95.0) | 15(37.5) |
| Small cell | 6 | 2(33.3) | 6(100.0) | 2(33.3) |
| Total | 60 | 23(38.3) | 58(96.7) | 30(50.0) |

| Table 10. Relationship of positivity between ras and EGFR in the cervical neoplastic lesions |
|---|------------|------------|------------|
| No. of Cases | ras(+) | ras(-) | EGFR(+), EGFR(-) |
| DYS | 8 | 1 | 0 | 0 | 7 |
| CIS | 39 | 7 | 0 | 18 | 14 |
| MIC | 32 | 7 | 3 | 9 | 13 |
| FIC | 60 | 18 | 5 | 12 | 25 |
| Total | 139 | 33 | 8 | 39 | 57 |
Table 11. Relationship of positivity between ras and EGFR in carcinoma in situ according to histologic type

<table>
<thead>
<tr>
<th></th>
<th>No. of Cases</th>
<th>ras(+)</th>
<th>EGFR(+)</th>
<th>EGFR(-)</th>
<th>ras(-)</th>
<th>EGFR(+)</th>
<th>EGFR(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parabasal</td>
<td>23</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Keratinizing</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pleomorphic</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cell</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>7</td>
<td>0</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12. Relationship of positivity between ras and EGFR in invasive carcinoma according to histologic type

<table>
<thead>
<tr>
<th></th>
<th>No. of Cases</th>
<th>ras(+)</th>
<th>EGFR(+)</th>
<th>EGFR(-)</th>
<th>ras(-)</th>
<th>EGFR(+)</th>
<th>EGFR(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keratinizing</td>
<td>21</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large cell</td>
<td>65</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cell</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>25</td>
<td>8</td>
<td>21</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

이렇게 비교적 증례수가 많기 때문에 본 연구에서는 다른 성장관련 인자들의 발현율의 수치는 전체적으로 좀 더 열세에 접근한 것으로 생각된다. 그러나 일부적으로는 증례수가 적어 미흡한 점이 있는 것도 인정된다. 대체로 자궁경부암의 전이 과정은 세포질, 전위 생존을 거쳐 원추질체, 자궁축 또는 방사선 치료를 하므로, 상당수의 증례는 모두 이상의 방법으로 재료를 얻은 것이다.

본 연구에서는 한 환자에서 양자 재료가 둘 이상일 때는 그 중 병소가 가장 크게 향유된 재료 하나를 선택하였고, 이들간에는 상호 비교하지 않았다. 환자의 연령 분포는 28세에서 86세 사이이며 평균은 전체 49.2세, 이형성 38.8세, 상피내암 47.7세, 미세침윤암 48.4세, 점침암 55.2세로 전암단계에서 차츰 더 종합 병소로 갈수록 연령이 증가하는 경향을 보였다.(Table 2)

최근에 자궁경부암에서 암유전자에 관한 관심이 높아지고 있어 Der 등은 CaSki 세포암 세포라인에서 ras 유전자 산물인 p21을 증명하고 있다. 또 다른 연구에서는 c-myc 유전자 낙양발현면 분석을 이용으로 발현할 우려가 크며, MIB 암에서 초기에 c-myc RNA의 높은 양을 볼 수 있다. 이는 세포막에서 작용한다고 알려진 암유전자 단백인 ras와 neu 및 정상세포에서도 발견되는 epidermal growth factor receptor (EGFR)의 발현을 면역조직학적으로 조사한 것이다.

Sagae 등은 경부상피내증상(CIN; cervical intraepithelial neoplasia)에서 ras의 발현을 조사한 결과 CIN I에서 17.9%, CIN II에서 28.9%, CIN III에서 53.9%, 미세침윤암에서 50.0%에서 양성으로 나타냈다고 하였다. 이와 같은 성적은 본 연구에서의 성적과 매우 유사한 면이 있다. 본 연구에서는 ras의 발현이 이형성이나 상피내암에서는
각기 12.5%와 17.9%로 발현율이 낮고 미세침윤암과 침윤암에서는 31.3%와 38.3%로 현저히 높았다(Table 3). 이를 좀더 세밀하게 분석하면, 이형성에서 경도 이형성 3에는 모두 음성있고 중등도 이형성 5에는 중 1예만 양성을 보였다(Table 4), 암종에서는 전체적으로 30.5%가 양성 을 보였고 양종에서 비교적 중류수가 많은 것 만 서로 비교하면 Stage 0에서는 17.9%, Stage Ia에서는 31.3%, Stage IIb에서는 38.9%였다(Table 5). 이로 보아 전암병소에서 상피내암으로 변환하면서 한 차례 ras의 발현율이 현저히 높아지며, 또한 상피내암 미세침윤이 되면서 또 한 차례 ras의 발현율이 현저히 높아진다고 할 수 있다. 같은 침윤암 중에서도 Stage IIb에서도 Stage Ia에서 보다 발현율이 높아 암종의 침윤 정도가 깊을수록 ras의 발현율이 높아지는 것으로 생각된다.

인체 암의 발생에 관계하는 원암유전자 중 ras family가 매우 중요한 역할을 하는 것으로 알려져 있다. ras 유전자와 그 산물인 p21과 결합, 방광, 유방 등 여러 장기의 암과의 관계에 대해서도 잘 밝혀져 있다. Ohuchi 등27은 유방암의 초기 발병과정에 p21이 깊이 관계한다고 지적한 바 있고, Michelassi 등28은 양성 결정 병소에서 p21의 발현이 높을수록 암변환 임계치가 크다고 하면서 발현율이 높은 사람들은 암발변화가 전에 조차를 하는 것을 전유하고 있다.

Sagae 등29은 침윤성 자궁경부암에서 조직형별로 keratinizing형이 57.1%, large cell형이 54.2%, small cell형이 38.7%에서 ras가 양성으로 나타났고, large cell형은 ras가 양성인 경우가 예후가 더 나빴고 small cell형은 양성인 경우가 예후가 오히려 좋고, 음성인 경우가 더 나빴다고 보고하고 있다. 본 연구에서 조직학적 분류에 따라 살펴보면 상피내암은 parabasal cell형이 8.7%로 현저히 낮았고, pleomorphic형은 그 중에서 많지 않아 확실히는 않으나 60.0%에서 양성이었다(Table 6). 침윤성암에서는 전체적으로 keratinizing형이 42.9%로 다소 높은 것 외에는 별다른 특징이 없었고(Table 7), small cell형은 종류수가 적이 서로 비교하기가 곤란하였다. 침윤성암을 다시 미세침윤암과(Table 8) 침윤암으로(Table 9) 나누어 보아도 별다른 차이를 찾아낼 수 없었다. 앞으로 좀더 많은 종류수를 대상으로 예후와의 관계를 밝히는 것도 필요하다고 생각된다.

본 연구에서 neu는 발현율이 전체적으로 매우
높아 94.2%에서 양성이라고(Table 3). 이형성에서 전체적으로는 75.0%에서 양성이며, 경도 이형성은 3예 중 1예만, 중등도 이형성 5예는 전체가 양성이어서 경도 이형성에서는 발현율이 높았다. 암종에서는 전반적으로 95% 전후로 발현율이 높았고 병기별(Table 5), 조직형별(Table 6, 7, 8, 9)로도 큰 차이를 찾아볼 수 없었다. 그러므로 neu는 전암병소에서 다소 발현율이 낮고 암종에 되면 거의 대부분이 발현되는 특이한 소견을 보여 예후측정자로서의 이용은 다소 문제가 있으며, 앞으로 더 연구해 보아야 할 문제인 것으로 사료된다.

EGFR는 neu-암단백과 구조적으로 유사하고
tyrosine kinase계의 단단백으로 방사선 둔apr인,s blotting technique 그리고 면역조직화학적 방법으로 정상조직보다 종양조직에서 발현이 증가됨이 알려져 있고 있다. EGF-수용체가 있는 유방암,21) 방광암,22) 위암23)에서 암성군보다 예후가 좋지 않다고 보고되고 있으며, Sainsbury 등24)는 면역조직화학적 염색상 EGFR 발현은 양조직의 분화도가 나름수록 증가했다고 하였다. 그러나 Horne 등25)과 Wrba 등26)에 의하면 유방암에서 EGFR와 그들 의 임상 동태와는 상관이 없다고 보고하였다.

본 연구에서 EGFR의 전체적으로 51.8%, 이형성이 12.5%(Table 3), 암종 전체는 54.2%에서 발현되었다(Table 5). 이형성을 세분하여 경도 이형성은 3예 모두가 음성이었고 중등도 이형성은 5예중 1예만 발현되어 이형성에서 EGFR의 발현율은 극히 높았다. 암종은 상피내암이 64.1%, 미세침음암과 침음암이 각각 50.0%에서 양성이고, 침음암을 병기별로 분류하여 비교적 증례수가 많은 Stage Iib와 비교하여도 침음암 여부와 그 깊이와는 큰 차이가 없었다(Table 5). 조직형별로 나누어 보면 상피내암에서 keratinizing형이 10예 중 9예에서 양성으로 확연하게 높았다(Table 6).

침음암에서도 전체적으로 keratinizing형이 76.2%
(Table 7), 침음암에서 92.9%(Table 9)로 다른 조직형에 비해 현저하게 높았으나 미세침음암에서 keratinizing형 7예 중 3예(42.9%)만 양성으로 나타나 특이한 수치를 나타내었다. 이는 미세침음암의 keratinizing형이 증례수가 다소 적이 확정
할만한 영향을 보여주는 것으로 생각되지는 않고 앞으로 더 많은 증례수를 조사해 보아야 할 것으로 생각된다.

V. 요 약

우리나라에서 가장 많은 여성암인 자궁경부암
에서 성장자극 신호전달계 중 세포막 수용체에
관계하는 ras, neu 및 EGFR의 발현을 알아보기
위해 이형성 9예, 상피내암 39예, 미세침음암
32예 및 침음암 60예 등 총 139예의 환자를 대
상으로 면역조직화학적 방법으로 조사하였다. 환
자의 평균 연령은 전체 49.2세, 이형성 38.8세,
상피내암 47.7세, 미세침음암 48.4세, 침음암
55.2세이었다.

ras 단백은 전체적으로 29.5%인 41예가 양성이 었고, 각 질환군별로는 이형성이상 피내암에서각
가 12.5%와 17.9%로 발현율이 낮고 미세침음
암과 침음암에서는 각 31.3%와 38.3%로 현저히 높
았다. 조직학적 분류에 따라서는 상피내암에서
parabasal cell형이 8.7%로 현저히 높았고, pele-
morphic형은 60.0%에서 양성하였다. 침음암에서
는 keratinizing형이 42.9%로 다소 높은 것 외에는
별다른 특징이 없었고, 이를 미세침음암과 침음
암으로 나누어 보아도 별다른 차이가 없었다.

neu 단백은 발현율이 전체적으로 매우 높아
94.2%에서 양성이다. 이형성에서 전체적으로는
75.0%에서 양성이며, 경도 이형성은 3예 중 1예
Min Seog Lee, II Soo Park : An Immunohistochemical Study for the ras and neu Oncoprotein and Epidermal Growth Factor Receptor in the Uterine Cervical Carcinoma

References

